Microwave Wireless Power Transmission Development Task

Presentation to Space Solar Power Concept and Technology Maturation Program Technical Interchange Meeting

Frank Little

Center for Space Power

Texas A&M University

Retrodirective System

- Pilot beam from receiving antenna
 - Phase detected across antenna face
 - Phase information used to create conjugate phase information for power beam steering
- Transmitting antenna
 - Modular phase shifted transmitting elements
- Rectenna
 - Efficient low power density conversion

Current Retrodirective WPT Demonstration Project

Features:

- Demonstration of a 5.8 GHz microwave power beam
- Phased Array Transmitting Antenna
 - 2.1 ft by 5.25ft
 - 10 subarrays, 2 active subarrays transmitting 40 watts each
 - 25.7 db gain, 4.5° 3 dB beamwidth (2-sided)
- Retrodirective Phase Control of Beam
 - One phasing transmitter in center of rectenna
 - Two subarray receivers in transmit antenna
 - Photonics system used to distribute phase reference to each subarray
- Receiving Rectenna
 - Approximately 39 inches diameter
 - Low power half-wave dipole circular polarization elements

Features Continue:

- Completely safe
 - Power density in center of beam = 2.4 mW/cm² (less than 1/2 of the acceptable safety level for short-term exposure as per NSTS 1700.7B
- Other
 - Light weight, portable, operates 120 volt, 60 Hz electrica outlet
 - Range = 33 feet
 - Demonstrates safety feature of retrodirective phasing, (loss of phasing signal disperses the power beam)
 - Grating lobe demonstration by physically separating the active subarrays

Exhibit System Diagram

10 subarrays: 2 active, 8 inactive

Demonstrates:

Wireless Power Transmission (85% transfer efficiency) Retrodirective Phase Control of Power Beam Photonics Phase Distribution System in Transmit Array Grating Lobe Characteristics

Antenna Characteristics

Transmit Antenna

- 10 subarrays: 2 x 5 in a rectangular configuration, 2 active, 8 inactive
 - 63 transmit patch antennas and 1 receive patch antenna per subarray
 - The 63 transmit patches are fed with equal phase
- Transmit power: Approximately 80 watts from the total array
- Frequency
 - Downlink Power Beam = 5.8 GHz
 - Uplink Pilot Signal = 2.9 GHz

NOTE: The frequencies are separate due to the need for isolation between transmit and receive. The uplink and downlink also have polarization diversity, i.e. RCP and LCP

Receive (Pilot Beam) Antenna

• Each of the 2 active subarrays have an uplink receive channel including the receive patch antenna and associated electronics.

Antenna Configuration

Equal phase transmitter module with pilot receiving antenna

Reference channel with photonic distribution system

Circular Polarized Rectenna

NSF/NASA/EPRI task

- Build a 2X2 array with retrodirective control
- Improve the low-power density conversion efficiency of the rectenna elements.
- Demonstrate, test and measure target tracking, beam steering, beam pattern and transmission and system efficiency